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Also optimize sampling
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Not all samples are equally useful

8

Reference

Random (Previous) Bad reconstruction
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Related work



Backbone BRDF models

1) Analytical models
• Phong [PB75]
• Cook-Torrance [CT82]

Optimize parameters



Backbone BRDF models

3 (RGB)2) Linear PCA model [Mat03] [NJR15]

Measured in the resolution of
90 (𝜃!) x 90 (𝜃") x 180 (𝜙")

• MERL Dataset

= 1,458,000



Backbone BRDF models
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2) Linear PCA model [Mat03] [NJR15]



fit weights by Least Squares

Backbone BRDF models
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2) Linear PCA model [Mat03] [NJR15]



Backbone BRDF models

Also optimized

3) Neural BRDF [SRRW21]



Backbone BRDF models

1) Analytical [PB75] [CT82]

2) Linear PCA [Mat03] [NJR15]

3) Neural [SRRW21]

To optimize samples, our method is orthogonal to ALL these models



Our solution



Our solution: meta-sampling
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Our solution: meta-sampling

Meta learning in Computer Graphics
• Metappearance [FR22]
• MetaSDF [SCT*20]
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Meta learning in Computer Graphics
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• MetaSDF [SCT*20]
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• Target parameter: model init.
• Fitting: Stochastic Gradient Descent (SGD)
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Meta sampling
• the sampler is our target parameter 𝜽
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Meta sampling
• the sampler is our target parameter 𝜽

Our solution: meta-sampling
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𝜃′𝜃′Iter N used to acquire unseen BRDFs 



For non-linear BRDF models

Using SGD in inner loop
•  too many steps are prohibitive by cost
•  20 steps are not enough to fully make use of samples
•  Use a meta-learned initialization [FR22]



Results
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#samples = 8, 
for the diffuse BRDF
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#samples = 8, 
for the diffuse BRDF
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#samples = 8, 
for the diffuse BRDF
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#samples = 8, 
for the diffuse BRDF
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#samples = 32, 
for the glossy BRDF



Increasing #samples
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Increasing #samples
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Increasing #samples
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Increasing #samples
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Increasing #samples
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Learned patterns
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Still difficult to interpret these patterns



Summary



Meta sampling

• Model-agnostic: Neural, Linear, and Analytical… all good!

• Performance
• Reconstruct high-quality BRDFs by only 4~32 samples 
• 5 orders of magnitutdes fewer

• Compared to [NJR15]
• Extended to more BRDF models
• Better loss using same number of samples
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Future work
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Meta-sampling: Learning to Learn and Sample BRDFs
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ryushinn.github.io/metasampling
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